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Abstract

Structural dynamics relates the excitation profile to the dynamic loads at a

particular location of the structure. Spectral methods fatigue-life estimation is

based on the assumptions of stationarity and the Gaussianity. This research

proposes a method for a fatigue-life estimation for non-stationary excitation.

The method is based on the short-time spectral narrowband method, where

the short-time width was found to be related to the structural dynamics (i.e.,

natural frequency, damping) of the excited structure. A detailed numerical and

a real experiment shows a significant accuracy increase for fatigue-life estimation

at non-stationary and non-Gaussian excitation.
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1. Introduction

In vibration fatigue flexible structures are subjected to irregular loads that

are amplified at the system’s natural frequencies and therefore have a significant

effect on the fatigue life [38].

In general, two approaches to a fatigue-damage estimation exist. The first
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is a time-domain analysis, where stress cycles are extracted from a known

time history by employing cycle-counting methods. One of the most widely

used counting methods is the rainflow algorithm, introduced by Matsuishi and

Endo [22, 2]. According to the hypothesis of linear damage accumulation, known

as the Palmgren-Miner rule [30], the fatigue-life is estimated. The second ap-

proach is in the frequency domain [38]. If a Gaussian distribution and the

stationarity of the analyzed time histories are assumed, the power spectral

density (PSD) uniquely defines the statistical characteristics of the time his-

tory [28]. In recent years, a lot of effort was put into the investigation of spec-

tral methods, since they provide several advantages (e.g., statistical description

of loads, significantly faster numerical simulations). Initially, in the frequency

domain, counting methods have been researched, see e.g.: [14, 25, 15], but in

the recent years multiaxial [3, 10, 29, 24], non-Gaussian [31, 41, 13] and non-

stationary [43, 40, 19] loads have attracted much attention. This research is

focused on non-Gaussian and non-stationary loads, e.g., originating from pres-

sure fluctuations in aeronautics applications [1] or road irregularities [35].

Kihm et al. [16] numerically demonstrated that a dynamic system’s re-

sponse to stationary, non-Gaussian excitation is Gaussian, justifying the use of

frequency-counting methods. This phenomenon does not apply to nonlinear sys-

tems due to the violation of the central limit theorem [6]. Due to the heavy tailed

cycle amplitude probability density function (PDF) of the non-Gaussian stress

response, spectral methods underestimate the damage intensity [16]. Bracessi

et al. [7] proposed a correction formula for the steady non-Gaussian stress state,

which was later improved by Cianetti et al. [13] for the strongly non-Gaussian

stress state. Benasciutti et al. [4] enhanced the Tovo-Benasciutti method to

incorporate the effects of a non-Gaussian distribution of the stress load in terms

of both skewness and kurtosis [39]. Wolfsteiner et al. [44] researched the fatigue-

damage potential of non-Gaussian random vibration for multi-degree-of-freedom

(MDOF) systems.

For non-stationary and non-Gaussian excitation, the bandwidth of the dy-

namic system’s frequency-response function is of great importance; for the Gaus-

2



sian response, the period of the system’s impulse-response function has to be

significantly longer than the occurrence rate of the load peaks [16]. Palmieri et

al. [31] experimentally researched different rates of the non-Gaussian and non-

stationary excitation of a dynamics system; similar to Kihm et al. [16], who

found that for a dynamic system, the non-Gaussianity in excitation results in

Gaussian loads. However, the non-stationarity in the excitation propagated to

the non-stationarity in loads and significantly impacted on the fatigue life [16].

Capponi et al. [9] proposed a run-test approach and defined the non-stationarity

index. In experimental work, the appropriate time-window width was related

to the system’s impulse-response function (IRF) for the identification of excita-

tion non-stationarity [9]. Cianetti et al. [12] researched the influence of differ-

ent time-window parameters on a fatigue damage-estimation for applications of

monitoring the instantaneous fatigue.

Considerable research effort was put into extending the existing spectral

methods for the non-stationary and non-Gaussian loads. Benasciutti et al. [5]

researched switching loads, where they employed a frequency-based analysis of

each adjacent stationary Gaussian or non-Gaussian segment. Wolfsteiner an-

alyzed the decomposition of non-stationary random vibrations into Gaussian

portions with direct applicability to frequency-counting methods [43]. Trapp et

al. studied an extension of the frequency-domain approach to the fatigue as-

sessment of amplitude-modulated non-stationary loading [40]. Furthermore, the

non-stationarity matrix was introduced by Trapp et al. [42] to encompass the

non-stationarity of loading’s frequency content.

Zhou et al. [45] numerically investigated stress mode shapes for the prediction

of multi-axial random fatigue hotspots. It was shown that the majority of the

response energy is concentrated in the vicinity of the mode shape, which is pre-

dominant at the fatigue hotspot. The latter was exploited in thermoelasticity-

based modal damage identification by Capponi et al. [8], where the damage

intensity of a particular mode shape was determined on the basis of a narrow-

band response approximation.

This study researches the effect of the system’s dynamic properties (i.e., nat-
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ural frequency, damping ratio) on how the non-stationary excitation propagates

through the dynamic system to the (non-stationary) load. The stress load at the

fatigue hotspots is considered narrowband and the fatigue-life is estimated us-

ing a short-time principle. The applicability of the proposed method to various

non-stationary excitations is numerically and experimentally researched.

This manuscript is organized as follows. In Section 2 a theoretical back-

ground for random processes, structural dynamics and damage evaluation is

provided. Section 3 introduces a method for a multiaxial fatigue-life estimation

of a structure subjected to a non-stationary and non-Gaussian random excita-

tion. In Section 4 numerical research and application of the proposed method

is provided, and additional experimental research is given in Section 5. Section

6 draws the conclusions.

2. Theoretical background

In this section the theoretical background to the random process, structural

dynamics and frequency-domain fatigue estimation will be given.

2.1. Random process properties

In vibration fatigue, structures are subjected to deterministic and non-

deterministic loads and can be researched as a random process [6, 38]. A random

process x(t) is characterized by the PDF as a function of a random variable x

and time t:

p(x, t) = lim
∆x→0

P (x ≤ x(t) ≤ x+ ∆x)

∆x
. (1)

The definition refers to an ensemble {x(t)}, where each sample function cor-

responds to a random variable x at time t. For the purpose of mathematical

manageableness, assumptions of ergodicity and stationarity are made, although

they are not always justified [6]. A stochastic process is weakly ergodic if the

time averages equal the ensemble averages with respect to the mean and the

covariance function [37]. For the random process to be considered stationary,

its probability distribution must be time independent [28].
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A Gaussian-distributed random process is described by the PDF p(x, t) [28]:

p(x, t) =
1√

2π σ2(t)
e

−(x−µ(t))2

2 σ2(t) , (2)

which has two degrees of freedom and is fully defined by the first statistical

moment, representing time dependent mean value µ(t) (definition in a broad

sense, corresponding to an ensemble average) or for ergodic random process,

representing time independent mean value µ:

µ(t) = E[x(t)] =
1

o

o∑
p=1

xp(t), (3a)

µ = 〈x(t)〉 =
1

n

n∑
i=1

xi, (3b)

and the variance σ2(t) = M2(t) [28], which is defined by the second (j = 2)

central statistical moment [37]:

Mj(t) = E[(x(t)− µ(t))j ] =
1

o

o∑
p=1

(xp(t)− µ(t))
j
, (4a)

Mj =
〈
x(t)− µ)j

〉
=

1

n

n∑
i=1

(xi − µ)
j
. (4b)

In Eqs. (3) and (4) o and n are the number of ensemble functions and number

of data points in the discrete time series, respectively.

Although it is common to assume Gaussianity, since, due to the central limit

theorem [6], many physical processes exhibit a Gaussian probability distribution,

some real loading cases do manifest non-Gaussianity. Parameters describing the

non-Gaussianity are skewness sk and kurtosis ku:

sk =
M3

M
3/2
2

=
M3

σ3
, ku =

M4

M2
2

=
M4

σ4
. (5)

Skewness, sk, is a measure of the asymmetry of the probability distribution,

whereas kurtosis, ku, meters the sharpness of the PDF. For a Gaussian-distributed

random process, kurtosis has a value of 3. A process is considered to be platykur-

tic for values ku < 3 and to be leptokurtic for ku > 3 [28].
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2.2. Structural dynamics and modal reduction

When dealing with the response of flexible structures, the majority of fatigue

damage is accumulated around the system’s exited natural frequencies. To re-

late a system’s stress response with its excitation, the stress frequency-response

function (FRF) is used [17]. The following paragraphs provide the minimal the-

ory with regard to structural dynamics. For more details the reader is referred

to [38].

A linear, time-invariant, MDOF system is described with equations of mo-

tion:

M ẍ(t) + C ẋ(t) + K x(t) = f(t) (6)

where M, C and K are the mass, viscous damping and stiffness matrices, respec-

tively. x(t) and f(t) are the time-dependent displacement and excitation force

vectors, respectively. Generally, Eq. (6) represents a coupled system of differ-

ential equations. For lightly damped systems, the use of proportional damping

is appropriate and the equations of motion can be decoupled with a transition

to modal coordinates q(t) [20]:

I q̈(t) +

r 2 ξr ωr
r

 q̇(t) +

r ω2
r

r

q(t) = ΦT f(t) (7)

with the relation between the physical and modal coordinates given as [20]:

x(t) = Φ q(t). (8)

In Eq. (7), I represents the identity matrix, 2 ξr ωr denotes the mass-normalized

r-th damping element and ω2
r is the square of the r-th natural frequency.

The mass-normalized modal matrix Φ consists of N vertically stacked mass-

normalized eigenvectors Φr that are complementary to the eigenvalues ω2
r in a

solution to the N -DOF system eigenvalue problem:(
K− ω2M

)
X = 0. (9)

By employing the system modal model, i.e., modal matrix Φ, the system eigen-

frequencies ωr and the damping ratios ξr, receptance matrix H(ω) can be ex-
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pressed in diagonal form [38, 20]:

H(ω) = Φ

r ω2
r − ω2 + i 2 ξr ω ωr

r


−1

ΦT. (10)

For a vibration fatigue damage assessment the stress response Xs(ω) is required.

By employing a finite-element method (FEM) analysis, the i-th component of

the stress steady-state response Xsi(ω) is readily obtained from the displace-

ment response under the assumption of small deflections using Hooke’s law [38]:

Xsi(ω) = Φsi

r ω2
r − ω2 + i 2 ξr ω ωr

r


−1

ΦT F(ω) = Hsif (ω) F(ω) (11)

with Φsi and Hsif (ω) representing the i-th stress-component modal matrix and

the stress-component FRF, respectively. The stress components si constitute

the stress tensor s using Voigt vector notation:

s = [sxx, syy, szz, sxy, syz, sxz]. (12)

The stress modal matrix Φs is defined via the stiffness tensor C and the linear

spatial differential operator D {·} [38]:

Φs = C D{Φ} , (13)

where D {·} is defined as:

D {·} =
1

2

(
∇+∇T

)
. (14)

The stress component FRF Hsif (ω) containing N modes is expressed as:

Hsif (ω) =

N∑
r=1

rHsif (ω) =

N∑
r=1

rR
si

ω2
r − ω2 + i 2 ξr ω ωr

, (15)

where rHsif and rR
si are the r-th modal and i-th stress component FRF and

the modal constant matrix [17], respectively.

For a description of the random excitation and the i-th stress-component

response in the frequency domain, the power spectral density (PSD) is used:

Ssisi(ω) =
∣∣H∗sif (ω)

∣∣2 · Sff (ω) (16)
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with Ssisi(ω) and Sff (ω) being the i-th stress component PSD and the force

excitation PSD, respectively. A generalized form can be used to include the

cross-correlation terms, known as the stress spectral density matrix or the stress

cross-correlation matrix [38]:

Sss(ω) = H∗sf (ω) · Sff (ω) ·HT
sf (ω), (17)

where the stress frequency-response function vector is defined as [38, 6]:

Hsf (ω) = [Hs1f (ω), Hs2f (ω), Hs3f (ω), Hs4f (ω), Hs5f (ω), Hs6f (ω)] . (18)

When a structure is excited in a limited frequency range, only a subset u of

N modes can be considered. A common frequency range, e.g., for automotive

accelerated-vibration test procedure is 5-2 000 Hz, making the higher frequency

modes negligible, and so they can thus be omitted using the modal decomposi-

tion [27]:

H̃sif (ω) =

u<N∑
r=1

rHsif (ω). (19)

Using the Eq. (19), the stress spectral density matrix (17) can be approximated

as [27]:

S̃ss(ω) = H̃∗sf (ω) · Sff (ω) · H̃T
sf (ω) ≈

u<N∑
r=1

rH
∗
sf (ω) · Sff (ω) ·r HT

sf (ω). (20)

2.3. Vibration fatigue damage estimation

For a time-domain fatigue-damage estimation the Palmgren-Miner [30, 23]

linear cumulative damage rule is preferred, where each cycle at stress amplitude

sa is associated with a damage Di:

D =

l∑
i=1

Di =

l∑
i=1

ni(sa)

Ni(sa)
. (21)

In Eq. (21) D is the total damage, l is the total number of blocks of constant-

stress amplitude sa, and ni and Ni are the number of cycles and the number of

cycles to failure at amplitude sa, respectively. In theory, the total damage at
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failure is often defined as D = 1. The Palmgren-Miner hypothesis is a stress-

fatigue model that utilizes the S-N curve for a description of the material’s

resistance to fatigue [18]:

sa
kN = C, (22)

where k is the curve slope and C is the curve intercept. When taking the

time-domain approach to fatigue analysis, the stress time history is reduced

to a set of stress reversals with the corresponding mean stresses, usually with

the rainflow-counting method [22]. The stress range PDF is obtained from the

resulting range-mean cycle-counting matrix, and the damage intensity can be

assessed [18].

Alternatively, the statistical properties of the stress time history can be

described in the frequency domain by the moments of the stress response PSD,

making the latter appropriate for a damage-intensity assessment [28].

For the majority of vibrating structures the failure is subjected to multi-axial

random stress loading, described by the PSD of the reduced response S̃ss(ω).

Using the modal-reduction approximation [27], the equivalent von Mises stress

(EVMS) criterion, proposed by Pitoiset and Preumont [32], can be adopted:

S̃c(ω) =

u<N∑
r=1

rSc(ω), (23)

where rSc(ω) relates to the r-th mode of the S̃c(ω) and is defined as [32]:

rSc(ω) = Trace [Q · rSss(ω)] , (24)

In Eq. (24), Q is a matrix of constant coefficients and is, in the case of planar

stress, given as:

Q =


1 −1/2 0

−1/2 1 0

0 0 3

 . (25)

For a review of multiaxial fatigue criteria the reader is referred to [10]. The

generalized form of the i-th spectral moment for the reduced mode r of the
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EVMS stress is defined [38, 26]:

rmi = 2

∫ ∞
0

ωi rSc(ω) dω. (26)

3. Fatigue life for non-stationary processes

The fatigue failure of a vibrating system is generally a consequence of a

material’s deterioration in a localized areas, i.e., in the hotspots. As discussed

in Sec. 2.2, hotspots can be researched with the modal-decomposition concept

and therefore decomposed for each deflection mode, see also [8, 26]. Here,

the following hypothesis is made: it is reasonable to assume that the hotspots

of the different EVMS stress mode shapes are spatially isolated and do not

superimpose on each other. In application, this assumption should be checked

through the stress modal analysis. In such a decomposed system, the majority of

the system response damage is at the hotspot’s predominant mode shape [45].

Consequently, the stress response at the hotspots can be approximated as a

narrowband process [6, 8]. While the following theory will be deduced in vector

form and for all the nodes of the structure, it is important to note that it is a

valid approximation of the fatigue damage at the hotspots only.

The EVMS stress response rsc(t) at the r-th mode shape’s hotspot, repre-

sented by rSc(ω) (24), is considered as a narrowband process with the stress

cycle amplitude sa being Rayleigh distributed [28]:

p(sa) =
sa

σ2
e

−sa2

2 σ2 (27)

with σ2 denoting mean square of stress response rsc(t). However, when the exci-

tation is non-stationary, Eq. (27) is rewritten using the short-time ∆t stationary

stress-response variance σ2(∆t), see Fig. 1a):

p(sa,∆t) =
sa

σ2(∆t)
e

−sa2

2 σ2(∆t) . (28)

The variance σ2(∆t) can be expressed in terms of the zeroth spectral mo-

ment (26) [38]:

σ2(∆t) = rm0(∆t) = 2

∫ ∞
0

rSc(ω,∆t) dω, (29)
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where the vector σ2(∆t) describes the variance at all nodes of the structure.

The r-th EVMS stress response PSD rSc(ω, ∆t) can be estimated using the

short-time Fourier transform (STFT). In time-frequency analysis, a compromise

between time and frequency resolution has to be made, due to uncertainty

principle theorem [21].

a)

∆t1 ∆t2 ∆tN

...

...

t

r
s c

(t
)

b)

Mean square bandwidth

ωr

rSc (ω,∆t1)

rSc (ω,∆tN )

rSc (ω,∆t2)

ω

r
S
c

(ω
,∆

t)

Figure 1: Narrowband stress response to non-stationary excitation: a) time history rsc(t); b)

narrowband approximation of PSD rSc(ω,∆t)

As rSc(ω) (24) describes the time-domain stationary random process of the

uniaxial equivalent alternating von Mises stress rsc(t) [33], the variance (29)

could also be obtained directly in the time domain (as will be the case in the

later introduced short-time method). If the stress response rsc(t) is further

decomposed into the r-th mode EVMS stress modal shape rsc and the time-

dependent modal coordinate qr(t) (see also Eq. (8)):

rsc(t) = rsc qr(t), (30)

the variance of rsc(t) can be expressed as:

σ2(∆t) = rsc σ
2
qr (∆t), (31)
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where σ2
qr (∆t) denotes variance of r-th modal coordinate at time segment ∆t,

given by Eq. (4b) for j = 2. Consequently, the estimation of the response

variance is performed on the modal coordinate qr(t), which in general does not

have to be a stationary random process.

Focusing on the r-th vibration mode, the r-th modal response qr(t) is ob-

tained by convolution (denoted by ∗) of the corresponding mode’s impulse-

response function (IRF) hr(t) and the r-th modal excitation fr(t) [38, 20]:

qr(t) = hr(t) ∗ fr(t) =

∫ t

−∞
hr(t− τ)fr(τ)dτ. (32)

In Eq. (32), fr(t) is given as ΦT
r f(t) (7) and hr(t) is characterized by the r-th

modal mass mr, the natural frequency ωr and the damping ratio ξr:

hr(t) =
1

mr ωd,r
e−ξrωrt sinωd,r t, (33)

where the damped natural frequency is given as ωd,r=ωr
√

1− ξ2
r [20].

If the short-time stationarity assumption is used (29), then it is of critical

importance to find the proper time ∆t (if it exists). For the majority of physical

phenomena, non-stationarity is exhibited as time fluctuations of their power as

opposed to the less commonly observed non-stationary frequency content of the

loading [9]. As shown in Fig. 2, the frequency of the excitation signal’s power

fluctuations (bursts) has a major effect on the stress load: the green color shows

the case when the period of bursts in the excitation is long (relative to hr(t)); in

this case the bursts are completely transferred to the system response load and

the process is non-stationary. However, when there are several bursts within

envelope of hr(t), the response loads are averaged to a stationary process (blue

color in Fig. 2). Fig. 2 depicts particular case of non-stationary excitation,

where local burst are superimposed on stationary signal. For generalization,

non-stationary excitation with various frequency content of modulating signal

will be considered in search of short-time width ∆t in Sec. 4.

As shown in Fig. 2 the proper short-time ∆t depends on the properties of

the dynamic system hr(t), i.e., the natural frequency and the damping.
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a)

∆t1 ∆t2

t

f r
(t

)
envelope of hr(t)

b)

∆t1 ∆t2

t

r
s c

(t
)

Figure 2: Effect of IRF hr(t) on the stress response non-stationarity: a) excitation; b) response

load

Kihm et al. [16] researched how the non-Gaussian excitation propagates

through the dynamic system. To discuss the details of the Kihm et al. research,

the time Tw required for the envelope of hr(t) to drop to the fraction δ of the

initial value has to be defined:

Tw =
ln (1/δ)

ωr ξr
, (34)

where ωr is the undamped natural frequency and ξr is the damping ratio. Kihm

et al. [16] numerically found that the distribution of the system response tends

towards Gaussian if the period of bursts in the excitation is shorter than 1/4 of

time for the IRF to drop to 10 percent of its initial amplitude (i.e., ∆t < Tw/4,

see Eq. (34) for δ = 0.1). However, if the period of bursts is longer than 10Tw

for δ=0.1, the input kurtosis is reproduced in the response load.

In this research the time window ∆t, required for the short-time variance

σ2(∆t) estimation, will be researched in detail in a numerical simulation and is

defined as:

∆t = nTw, (35)
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where n denotes a fraction of Tw.

Using a short-time cycle amplitude PDF (28), the short-time damage inten-

sity d [39, 36] is defined here as:

dNB(∆t) = νp C
−1

∫ ∞
0

sa
k p(sa,∆t) ds, (36)

where C and k are material S-N curve parameters. A closed-loop expression for

Eq. (36) is provided in Appendix Appendix A. In Eq. (36) the expected peak

occurrence frequency νp coincides with the hot-spot predominant r-th stress

mode shape’s natural frequency [8]:

νp =
ωr
2π

. (37)

The average short-time-based damage-intensity estimator dNB,∆t of the non-

stationary stress time history is obtained by time-averaging (denoted by 〈·〉,
according to Eqs. (3b) and (4b)) the expression, given by Eq. (36):

dNB,∆t = 〈dNB(∆t)〉 = νp C
−1

∫ ∞
0

ska 〈 p(sa,∆t)〉ds, (38)

as the short-time variance σ2(∆t) is considered to be a random process. The

fatigue-life estimator is expressed as the inverse of the average damage intensity:

TNB,∆t =
1

dNB,∆t

. (39)

The influence of short-time ∆t on the fatigue-life error is examined with

respect to the minimization of the fatigue-life error, defined as:

Terr =
TNB,∆t − TRFC

TRFC
, (40)

where TRFC is the reference time-domain rainflow-counting algorithm used with

the Palmgren-Miner rule.

4. Numerical research

In the following subsections the generation of excitation with various non-

stationarity rates is presented and then the effect of the system’s modal proper-

ties on the stress response is investigated with the aim to determine the proper

short-time ∆t width (35) for the fatigue-life estimation, using the proposed

method of Sec. 3.
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4.1. Non-stationary signal generation

Non-stationary excitation fam(t) is obtained on the basis of amplitude mod-

ulation, where first the stationary Gaussian signal f(t) is generated and then it

is multiplied by the modulating signal m(t) with a specific non-stationarity rate.

The stationary signal is considered as a carrier wave, whereas the modulating

signal represents time-varying instantaneous power [11].

Stationary excitation is taken as a Gaussian random process realization with

a prescribed flat-shape PSD in the frequency band from 100 to 150 Hz, as shown

in Fig. 3a). The selected frequency band covers the natural frequency of the

SDOF system, to which the excitation is applied. The corresponding stationary

random-process realization is shown in Fig. 3b).

The modulating signals m(t) of different non-stationarity rates are produced

with the amplitude-modulation technique, where two groups of modulating sig-

nals are considered:

• modulating signals as random-process realizations with the prescribed flat-

shape PSD [28],

• modulating signals obtained with a cubic spline interpolation of the points,

produced by the use of a beta distribution [16].

In the first approach, modulating signals are obtained as absolute values of

random process realizations, which ensure non-stationary excitation with an

initial kurtosis ku > 3. Excitation signal fam(t) is obtained as [40]:

fam(t) = f(t)(|m(t)|p + ∆m), (41)

where exponent p and tolerance ∆m are introduced to provide a desired kur-

tosis of resulting signal. Values of both parameters can not be determined in

advance, and iteration is needed to obtain excitation signal’s kurtosis ku =7. To

numerically research how the non-stationary excitation reacts with the struc-

ture, different excitation signals with modulation m(t) frequency ranges were

prepared using the Python open-source pyExSi package [46]: [0.001-0.01] Hz,
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Figure 3: Excitation generation: a) PSD of stationary excitation with variance of 1 N2;

b) stationary excitation; c) non-stationary excitation FR-[1-2]; d) non-stationary excitation

CS-4096

[0.01-0.1] Hz, [0.1-1] Hz, [1-2] Hz, [2-5] Hz, [5-10] Hz, [10-25] Hz, [25-50] Hz,

[50-100] Hz and [100-200] Hz. Corresponding to the frequency range of modu-

lation, the non-stationary excitation is labeled as FR-l. For example, the non-

stationary excitation FR-[1-2], depicted in Fig. 3c), is significantly below the

natural frequency of the later researched dynamic structure, while FR-[100-200]

is in the same frequency range.

In the second approach, modulating signals m(t) with the required non-

stationarity rate are generated with a cubic spline interpolation of points, based
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on a beta distribution, whose probability density function (PDF) is given as [34]:

p(x) =
xα−1(1− x)β−1 Γ(α+ β)

Γ(α) Γ(β)
, (42)

where Γ(·) represents gamma function. Parameters α and β are chosen in a way

to obtain the desired kurtosis ku = 7 of the resulting non-stationary excitation

fam(t). In this approach, only first order properties of modulating signal are

considered. The non-stationarity rate is affected by the number of points l

used in the cubic spline interpolation, as the frequency of the modulation signal

increases with the number of points l. The notation for the non-stationary

loading is CS-l. The following non-stationary signals are generated: CS-16, CS-

32, CS-128, CS-256, CS-512, CS-1024, CS-2048, CS-4096, CS-8192, CS-16384,

CS-32768, CS-65536, CS-131072, CS-262144 and CS-524288. Signal synthesis

is done with the pyExSi package [46]. Again, CS-16 is significantly below the

natural frequency of the researched dynamic structure, while CS-524288 is in the

same frequency range. Fig. 3d) shows the non-stationary excitation CS-4096.

For all the above-generated signals, a sampling frequency of 8096 Hz was

used, with an excitation signal length of ≈ 35 min.

4.2. Numerical test case

For the numerical test case a SDOF system is used, as shown in Fig. 4a),

with the natural frequency fr = 120 Hz. For the sake of simplicity, the modal

response qr(t) to excitation fam,r(t) is considered as the r-th mode EVMS stress

time history rsc(t) (30) (transformation from modal displacements to stresses

can be carried out via a FEM analysis). For small values of the damping, the

dynamic system approximates a narrowband filter, as can be seen from Fig.

4b).

To research the influence of the short-time ∆t on the average short-time-

based damage-intensity dNB,∆t estimation (38), the short-time ∆t (using param-

eter n, Eq. (35)) vs. the modulation frequency of the non-stationary excitation

and the damping ratio ξ is researched. The error in the damage estimation Terr

is researched for both types of non-stationarity generation, see Figs. 5 and 6 for
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Figure 4: SDOF system: a) model; b) EVMS stress FRF

FR-l and CS-l, respectively. From the figures it is evident that there is a signif-

icant error in the identified damage at different short-time window parameter

(n) used for different types of non-stationarity.

If closer attention is paid to the numerical results for the parameter n ∈
[0.25, 3] and the damping ratio ξ ∈ [0.001, 0.051], then the spread of the error

is significantly reduced for both types of non-stationary excitation and for all

the modulation parameters, see Fig. 7a) where the standard deviation of the

fatigue-life error σTerr(ξ,n) is shown. Fig. 7b) shows the standard deviation of

the fatigue-life error averaged for all the damping ratios σTerr(n); from the figure

it is clear that the minimum spread of the results is at n=0.75. This corresponds

to the short-time ∆t=Tw(δ = 0.178), Eq. (34). While the proper δ was found

(and later used) to be 0.178; based on the result shown in Fig. 7b), δ in the

range from 0.1 to 0.5 (corresponding to n ∈ [0.25, 1]) would not have a significant

influence on the standard deviation of the fatigue-life error.

Fig. 8 shows the averaged fatigue-life error for both groups of non-stationarity

(averaged over all the modulation parameters); from the averaged results a

close-to-linear dependency on the damping was observed. Due to the close-to-

linear relation, a linear approximation of both types of non-stationarity was

made T err,lin(ξ) (approximation range ξ∈ [0.001, 0.051]):

T err,lin(ξ) = −2.331 ξ − 0.431. (43)
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Figure 5: Fatigue-life error Terr for non-stationary excitation FR-l and various damping ratios

ξ: a) ξ=0.005; b) ξ=0.01; c) ξ=0.02; d) ξ=0.05

For the purpose of identification of correct short-time-window width, multiple

S-N curve slopes were used (k ∈ [3− 13]). The Eq. (43) is identified for k = 5.9.

A detailed analysis showed that the T err,lin is weakly exponentially dependent

on k and can be in the range k ∈ [3− 13] defined as (see Appendix Appendix

B for details):

T err,lin(ξ, k) =
(

2.297 e−
k−3
1.622 + 2729.224 e

k−3
15658 − 2732.392

)
· ξ (44)

+ 0.756 e−
k−3
4.423 − 0.826.

A flowchart in Fig. 9 summarizes the short-time fatigue-life estimation. Con-

sidering Eq. (44), the average short-time fatigue-damage intensity dNB,∆t (38)

can be corrected:

d
cf

NB,∆t(ξ, k) = dNB,∆t ·
(
T err,lin(ξ, k) + 1

)
. (45)

Based on Eqs. (39) and (45), the estimated fatigue life T
cf

NB,∆t is compared
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Figure 6: Fatigue-life error Terr for non-stationary excitation CS-l and various damping ratios

ξ: a) ξ=0.005; b) ξ=0.01; c) ξ=0.02; d) ξ=0.05

to the rainflow-counting-based fatigue life TRFC for both types of non-stationary

excitation (for k = 5.9), as depicted in Fig. 10. For reference, the fatigue life

is evaluated with the narrowband spectral method [36], where stationarity of

the excitation is assumed. In contrast to the narrowband spectral method,

which over-estimates predicted fatigue life in case of non-stationary excitation,

the proposed method allows for narrowband approximation under such non-

stationary conditions.

5. Experiment

In this section a non-stationary excited structure is researched with the

proposed short-time method (45); the numerical fatigue-life estimation is com-

pared to the experimentally observed fatigue life. The experimental data are

taken from the experiment presented by Capponi et al. [9]; where, in this re-
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Figure 7: Standard deviation of fatigue-life error: a) σTerr(ξ,n); b) σTerr(n), averaged over ξ
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Figure 8: Average fatigue-life error T err(ξ) vs damping ratio ξ

search, we have used additional acceleration response measurements which were

previously not reported, neither used (see Fig. 11a)). Based on the additional

measurement, the stress response time-history rsc(t) is obtained as described in

following paragraphs.

With accelerated fatigue testing on an electro-dynamic shaker, a large stress

response can be achieved with little excitation power if the natural frequency

of the test object lies in the excitation frequency range. For this purpose, a

Y-shaped sample was taken as the test object [9], as it satisfies the prerequisites

of well-separated natural frequencies in the excitation frequency range.

The Y-shaped sample (Fig. 11a)) consist of three beams at 120◦ around

the main axis with a rectangular cross-section of 10×10 mm2. It was made
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Figure 9: Flowchart of the short-time fatigue-life estimation.

from an aluminium alloy A-S8U3 casting with a density of 2710 kg/m3 and a

Young’s modulus of 75 000 MPa, with a surface finish produces by milling. As

the surface finish is critical for a high-cycle fatigue life where crack initiation

dominates the fatigue life [18], additional fine grinding was applied to the fatigue

zone to reduce the surface roughness. With regard to an adequate excitation

of the analyzed mode shape with translational movement in the shaker’s axial

direction, the 4-th mode shape, depicted in Fig. 11b), was considered as the

most appropriate. To adjust the initial natural frequency of sample to f4 = 775

Hz, steel weights with a mass of 52.5 g were fixed to the ends of the two beams.

Fig. 11a) shows the Y-shaped sample, mounted on an LDS V555 electro-
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dynamic shaker with a fixation adapter. Two accelerometers were used to mea-

sure the response to force excitation: PCB T333B30 for the base of the shaker

(excitation) and Bruel&Kjær 4517-002 to measure the response of the tested

sample. For the signal acquisition and generation, NI-9234 24-bit and NI-9263

16-bit ADC modules were used, respectively.

Non-stationary excitation signals were generated by multiplication of the

stationary Gaussian random signal with modulating signals of different non-

stationarity rates. Stationary Gaussian signal is defined with flat-shaped PSD

in frequency band from 600-850 Hz, exciting 4-th natural frequency of Y-shaped

sample. A modulating signal m(t) with the desired non-stationarity rate is

generated by squeezing the primary modulating signal. The latter is obtained

with a cubic spline interpolation of the points, based on a beta distribution [16].

After squeezing the primary modulating signal l-times, and then by replicating

and appending it to reach the total duration of the stationary signal, both

signals can be multiplied. In this way a random non-stationary excitation with

a specific non-stationarity rate is obtained, labeled SQ-l. The following non-

stationary signals were generated: SQ-1, SQ-2, SQ-4, SQ-10, SQ-50, SQ-500

and SQ-10000. To perform comprehensive experimental testing, excitations at

four different force PSD levels were carried out: 6.75, 9, 13.5 and 18 N2/Hz.

Certain load cases (combination of force PSD level and signal type) were left

untested or no failure after 2·107 load cycles was observed [9]. The sample failure

was identified as a drop in the sample’s 4-th natural frequency, for details see [9].

The experimentally observed fatigue life [s] is given in Tab. 1.

For each sample, full time histories of the excitation and response accelerom-

eter were measured (sampling frequency: 25 600 Hz). The shortest time-history

length of ≈ 6 min matches the excitation type SQ-4 at 18 N2/Hz, whereas in

the case of the stationary excitation at a PSD level of 9 N2/Hz the time history

exceeds 210 min. The total number of experiments was 42 and the total amount

of measured data ≈ 100 GB. These measurements were used for the 4-th mode-

shape hotspot stress time-history estimation. The stress time-history estimation

was based on a numerical FEM modal model (as a linear system), which was
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4405

8389
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3538
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-

SQ-4
4429

9681

5435

9625

3279

3992

2899

4288

737

1689

899

1674
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341

947

SQ-10 -
3177

5564

3824

5282

1175

2151

1333

2086

598

338

497

1179

SQ-50 -
3722

11595

5894

12116
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3794

5234

3592
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1666

1069

1706

SQ-500 -
>12600 4069

4662

6411

4817

1624

2188

2793

2246

SQ-10000 - -
6299

4725

6309

5228
-

Stationary -
>12600 4428

5416

3157

2573

Table 1: Experimental (black) and numerically predicted (red) fatigue life [s] (for most load

cases, two samples were tested)

used to identify the FRF to the EVMS stress time-history rsc(t) (30); the input

to the numerical model was the measured relative acceleration (response accel-

eration minus base acceleration). The 4-th natural frequency’s corresponding

stress mode shape hotspot is shown in Fig. 11b). Using Eq. (45) the fatigue

life was estimated as the inverse of the damage intensity d
cf

NB,∆t(ξ, k). In the

damage estimation the experimentally identified damping ratio of the 4-th mode

shape was used: ξ4 = 0.003. The fatigue parameters were determined on the

stationary excited samples using the least-square optimization; the narrowband

spectral method was related to the experimentally identified fatigue life, result-
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ing in:

k = 5.9, C = 4.04 · 1018 [MPak].

Based on the experimentally identified fatigue parameters, damping, natu-

ral frequencies and the time histories from both accelerometers, the fatigue life

was obtained for each tested sample, see Tab. 1. Fig. 12 compares the narrow-

band spectral method (which assumes stationarity) to the proposed short-time

method; for non-stationary excitation a significant improvement in the fatigue

life accuracy is observed. As the proposed method represents numerical simpli-

fication of more accurate time-domain modelling of fatigue process, Fig. 12c)

depicts a comparison between rainflow-counting-based fatigue life TRFC and ex-

perimental life.

For the estimation of the fatigue life T
cf

NB,∆t, shown in Fig. 12, the total

length of the time-histories was used (until failure). In an application this does

not make a lot of sense, as the fatigue damage should be estimated from the

shortest-possible time histories. In non-stationary excitation, this is particularly

hard to perform. Due to this, Fig. 13 shows the relative error of the estimated

fatigue life as a function of the measured time, where the fatigue-life estimation

with the total length of the time history was taken as a reference fatigue life.

For clarity reasons, only selected load cases are shown: SQ-1, SQ-10, SQ-10000

and stationary loading (all excitation PSD level of 13.5 N2/Hz). As expected,

the stationary conditions converge faster then the non-stationary. For the non-

stationary loads we observed that the rate of convergence is dependent on the

modulating parameters of the loading, i.e., the higher the modulating frequency

in the non-stationarity, the faster the convergence of the fatigue life T
cf

NB,∆t.
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Figure 10: Numerically predicted fatigue life for non-stationary signals FR-l and CS-l: a) FR-

l, narrowband spectral method; b) FR-l, the proposed method; c) CS-l, narrowband spectral
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26



a)

Bruel&Kjær 4517-002

PCB T333B30

b)

accelerometer location

maximal EVMS stress location

Figure 11: Y-shaped sample: a) with installed accelerometers [9]; b) FEM model of as mounted

on the shaker’s moving element, displaying EVMS stress location for the 4-th mode shape
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Figure 12: Experimental and predicted fatigue life: (a) using narrowband spectral method;

(b) using proposed method; c) rainflow-counting-based fatigue life TRFC
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6. Conclusions

This research focuses on the fatigue-life estimation of flexible structures ex-

posed to non-stationary excitation. Non-stationarity propagates through the

dynamic structure from the excitation to the response location. This propaga-

tion is defined by the dynamic properties of the structure. In this research, it

was shown that the propagation depends on the type of non-stationarity, the

modulation frequency in the non-stationarity, and the dynamic properties of the

structure (i.e., the damping and natural frequency).

A new, averaged short-time damage intensity for non-stationary excitation

is introduced. The method is based on the narrowband spectral method and on

the modal decomposition of the stress mode shapes. Due to the assumptions of

the proposed method, it is only valid close to the localized mode shape hotspots;

however, as flexible structures accumulate most fatigue damage in the natural

frequencies, this is not limiting the applicability, provided the stress hotspots

of different modes do not superimpose. One of the critical parameters is the

time length in the short-time method, which is researched for two types of non-

stationarity.

Numerical research is presented that reveals the importance of damping

and natural frequency for a proper damage-intensity identification during non-

stationary excitation. The experimental test case showed a significant improve-

ment in the identification of the fatigue-life. If (for a non-stationary excited

system) the stationarity assumption was used, the error was within the 800

percent range, while with the proposed averaged short-time damage intensity

method, the error was within the 250 percent range. The results are promis-

ing in terms of providing a general framework for fatigue-life estimations of

non-stationary excited dynamic structures.
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Appendix A. Narrowband approximation

Closed-loop expression for narrowband approximation is given as [36]:

dNB = ν+
0 C−1

(√
2σ2

)k
Γ

(
1 +

k

2

)
, (A.1)

where ν+
0 is expected frequency of positive zero-crossings and Γ(·) represents

gamma function. In numerical research, average damage intensity dNB,∆t is

implemented according to Eq. (38), but could be also done by time-averaging

(denoted by 〈·〉) of Eq. (A.1).
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Appendix B. Fatigue-life error

The function for T err,lin(ξ, k) (44) can be written as:

T err,lin(ξ, k) = A(k) · ξ +B(k). (B.1)

A detailed analysis of the terms A(k) and B(k) has shown weak exponential de-

pendence, see Figs. Appendix B.1a) and Appendix B.1b), respectively. Due to

the exponential dependence, the exponential fit of data resulted in the Eq. (44).
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Figure Appendix B.1: Exponential fit of data: a) A(k); b) B(k)
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